
           ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 5, May 2015 
 

Copyright to IJARCCE                                                       DOI  10.17148/IJARCCE.2015.45113                                                530 

NC-CLOUD: A NETWORK-CODING BASED 

DISRTIBUTED STORAGE SYSTEM IN A 

MULTI-CLOUD 
 

Dr. Mohammed Abdul Waheed
1
, Sushmita BN

2
 

Associate Professor, Dept. of Computer Science and Engineering, VTU RO PG Centre, Kalaburgi, India
1
 

IV SEM M.tech, Dept. of Computer Science and Engineering, VTU RO PG Centre, Kalaburgi, India
2
 

 
 

Abstract: NC-Cloud is a proof of concept prototype of a network coding based storage system that aims at providing 

fault tolerance and reducing data repair cost when storing storage using multiple cloud storage. To provide fault 

tolerance for cloud storage, recent studies propose to stripe data across multiple cloud vendors. However, if a cloud 

suffers from a permanent failure and loses all its data, we need to repair the lost data with the help of the other 

surviving clouds to preserve data redundancy. We design a proxy based storage system for fault tolerant multiple cloud 

storage called NC-Cloud, which achieves reduction in repair traffic for a permanent multi-cloud failure. NC-Cloud is 

built on top of a network-coding-based storage scheme called regenerating codes. Specifically we propose an 

implementable design for the functional minimum-storage regenerating (FMSR) codes, which maintain the same fault 

tolerance and data redundancy as in traditional erasure codes (e.g., RAID-6), but use less repair traffic. We validate that 

FMSR codes provide significant monetary cost savings in repair over RAID-6 codes, having comparable response time 

performance in normal cloud storage operations such as upload/download. 
 

Keywords: Regenerating codes, Network coding, fault tolerance, Recovery, Implementation. 
 

I. INTRODUCTION 

With the increasing growth of data to be managed, 

distributed storage systems provide a reliable platform for 

storing massive amounts of data over a set of storage 

nodes that are distributed over a network. A real-life 

business model of distributed storage is cloud storage 

(e.g., Amazon S3 [3] and Windows Azure), which enables 

enterprises and individuals to outsource their data backups 

to third-party repositories in the Internet. One key feature 

of distributed storage is data consistency, which normally 

refers to the redundancy of data storage specifically,  

given the pre-determined level of redundancy the 

distributed storage system must sustain normal I/O 

operations within a tolerable number of node failures. In 

addition, in order to maintain the necessary redundancy, 

the storage structure must carry data repair, which 

involves reading data from existing nodes and 

reconstructing essential data in the new nodes.  
 

Recent studies propose a class of fast data repair schemes 

based on network coding [2] for distributed storage 

systems. Such network-coding-based schemes, or called 

regenerating codes, seek to intelligently mix and combine 

data blocks in existing nodes, and renew data blocks at 

original nodes. It is theoretically shown that regenerating 

codes can improve the data repair performance over 

traditional redundancy approaches such as erasure codes 

(RAID-6). 
 

In this paper, we propose NC-Cloud, a proxy-based 

system designed for multiple-cloud storage. We propose 

the first implementable design for the functional 

minimum-storage regenerating code (F-MSR) [6], and in 

particular, we Eliminate the need of performing encoding  

 

operations within storage nodes as in existing theoretical 

studies. Our F-MSR implementation maintains double-

fault tolerance and has the same storage cost as in 

traditional erasure coding schemes based on RAID-6, but 

uses less repair traffic when recovering a single-cloud 

failure. 

 

II. MOTIVATION OF F-MSR 

We consider a distributed, multiple-cloud storage setting 

from a client’s perception, such that we streak data over 

several cloud vendors. We propose a proxy-based design 

[1] that interconnects multiple cloud preservation, as 

shown in Figure 1(a). The proxy serves as an interface 

between client applications and the clouds. If a cloud 

experiences a permanent failure, the proxy activates the 

repair operation, as shown in Figure 1(b). That is, the 

proxy reads the important data pieces from other current 

clouds, reconstructs new data pieces, and writes these new 

pieces to a new cloud.  

 

We consider fault-tolerant storage based on maximum 

distance separable (MDS) codes. Given a file object, we 

divide it into equal-size native chunks, which in a non-

coded system, would be stored on k clouds. With coding, 

the native chunks are encoded by linear combinations to 

form code chunks. The native and code chunks are 

distributed over n > k clouds. When an MDS code is used, 

the original file object may be reconstructed from the 

chunks contained in any k sf any n − k clouds. We call this 

feature the MDS property. The extra feature of F-MSR is 

that reconstructing a single native or code chunk may be 

achieved by reading up to 50% less datas  



           ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 5, May 2015 
 

Copyright to IJARCCE                                                       DOI  10.17148/IJARCCE.2015.45113                                                531 

 
(a)Normal operation                   (b) Repair operation 

                       

Figure 1: Proxy-based design for multiple-cloud storage: 

(a) Normal operation, and (b) repair operation when Cloud 

node 1 fails. During repair, the proxy regenerates data for 

the new cloud from the surviving clouds than 

reconstructing the whole file This paper considers a 

multiple-cloud setting that is double-fault tolerant (e.g., 

RAID-6) and provides data availability toward at most two 

cloud failures (e.g., a few days of outages [7]). That is, we 

set k = n − 2.  

 

We now consider the double-fault tolerant implementation 

of F-MSR in a proxy-based setting, as shown in Figure 

2(b). F-MSR divides the file into four native chunks, and 

constructs eight distinct code chunks P1, · · · , P8 formed 

by different linear combinations of the native chunks. 

Each code chunk has the same size M/4 as a native chunk 

Any two nodes can be used to recover the original four 

native chunks.  

 

Suppose Node 1 is down. The proxy collects one code 

chunk from each surviving node, so it downloads three 

code chunks of size M/4 each. Then the proxy regenerates 

two code chunks P1' and P2' and P0 2 formed by different 

linear combinations of the three code chunks. To 

generalize F-MSR for n storage nodes, we divide a file of 

size M into 2(n − 2) native chunks, and generate 4(n − 2) 

code chunks.  

 

Then each node will store two code chunks of size M/ 

2(n−2) each. Thus, the total storage size is Mn/n−2 . To 

repair a failed node, we download one chunk from each of 

n − 1 nodes, so the repair traffic is M (n−1)/2(n−2). This 

paper considers the baseline RAID-6 implementation 

using Reed-Solomon codes.  

 

Its repair method is to reconstruct the whole file, and is 

applicable for all erasure codes in general. Recent studies 

[18, 28, 29] show that data reads can be minimized 

specifically for XOR based erasure codes. 

 

We can see that in EMSR codes, the storage size is 2M 

(same as RAID-6 codes), while the repair traffic which is 

25 percent of saving (compared with RAID-6 codes). 

EMSR codes leverage the notion of network coding [2], as 

the nodes generate encoded chunks during repair. 

(a)RAID-6 Codes 

 

 
(b) EMSR Codes 

 

 
(c)FMSR Codes 

 

III. FMSR CODE IMPLEMENTATION 

In this section, we present a systematic approach for 

implementing FMSR. We specify three operations for 

FMSR on a particular file object: (1) file upload (2) file 

download (3) repair. Our implementation assumes a thin 

cloud interface [60], such that the storage nodes (i.e., 

cloud repositories) only need to support basic read/write 

operations. Thus, we expect that our FMSR code 

implementation is compatible with today’s cloud storage 

services. 
 

3.1 Basic Operations 

3.1.1 File Upload 

To upload a file F, we first divide it into k(n-k) equal-size 

native chunks, denoted by(Fi)i=1,2.......k(n-k).We then encode 

these k(n-k) native chunks into n(n-k) code chunks, 

denoted by (Pi)i=1.2.......n(n-k).Each Pi is formed by a linear 

combination of the k(n-k) native chunks. Specifically , we 

let EM=[αij] be an n(n-k)*k(n-k) encoding matrix for some 

coefficients αij (where i=1,...n(n-k) and j=1,..,k(n-k)) in the 

Galois field GF(2
8
).We call a row vector of EM an 

encoding coefficient vector (EVC),which contains k(n-k) 

elements. 
 

We compute each Pi by the product of ECVi  and ll the 

native chunks F1, F2,......,Fk(n-k), i.e,. Pi=∑
k(n-k)

j=1 αi,j Fj for 

i=1,2,...,n(n-k),where all arithmetic operations are 

performed over GF(2
8
). The code chunks are then evenly 

stored in the n storage nodes, each having (n-k) Chunks, 

also, we store the whole EM in a metadata object that is 

then replicated to all storage nodes. 



           ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 5, May 2015 
 

Copyright to IJARCCE                                                       DOI  10.17148/IJARCCE.2015.45113                                                532 

3.1.2 File Download 

To download a file, we first download the corresponding 

metadata object that contains the ECVs. Then, we select 

any k of the n storage nodes, and download the k(n-k) 

code chunks from the k nodes. The ECVs of the k(n-k) 

code chunks can form a k(n-k) * k(n-k) square matrix. If 

the MDS property is maintained, then by definition, the 

inverse of the square matrix must exist. Thus, we multiply 

the inverse of the square matrix with the code chunks and 

obtain the original k(n-k) native chunks. The idea is that 

we treat FMSR codes as standard Reed-Solomon codes, 

and our technique of creating an inverse matrix to decode 

the original data. 

 

3.1.3 Iterative Repairs 

We now consider the repair of F-MSR for a file F for a 

permanent single-node failure. Given that F-MSR 

regenerates different chunks in each repair, one challenge 

is to ensure that the MDS property still holds even after 

iterative repairs. . Here, we propose a two-phase checking 

heuristic as follows. Suppose that the (r−1)
th

 repair is 

successful, and we now consider how to operate the r
th

 

repair for a single permanent node failure (where r>1). We 

first check if the new set of chunks in all storage nodes 

satisfies the MDS property after the r
th

 repair. In addition, 

we also check if another new set of chunks in all storage 

nodes still satisfies the MDS property after the (r + 1)
th

 

repair should another single permanent node failure occur 

(we call this the repair MDS property). We now describe 

the r
th

 repair as follows: 

 

Step 1: Download the encoding matrix from a surviving 

node. Recall that the encoding matrix EM specifies the 

ECVs for constructing all code chunks via linear 

combinations of native chunks. We use these ECVs for 

our later two-phase checking heuristic. Since we embed 

EM in a metadata object that is replicated, we can simply 

download the metadata object from one of the surviving 

nodes. 

 

Step 2: Select one random ECV from each of the n − 1 

surviving nodes. Note that each ECV in EM corresponds 

to a code chunk. We pick one ECV from each of the n-1 

surviving nodes. We call these ECVs to be ECVi1, ECVi2,..., 

ECVin-1. 

 

Step 3: Generate a repair matrix. We construct an (n-

k)*(n-1) repair matrix RM=[ϒij], where each element ϒij 

(where. i=1,...,n-k and j=1,...,n-1) is randomly matrix for 

reliable storage is consistent with that in. 
 

Step 4: Compute the ECVs for the new code chunks and 

reproduce a new encoding matrix. We multiply RM with 

the ECVs selected in Step 2 to construct n − k new ECVs, 

denoted by ECV
'
i=∑

n=1
j=1ϒi,j ECVij for i=1,2,....n-k. Then 

we reproduce a new encoding matrix, denoted by EM' 

which is formed by substituting the ECVs of EM of the 

failed node with the corresponding new ECVs.  
 

Step 5: Given EM', check if both the MDS and repair 

MDS properties are satisfied. Intuitively, we verify the 

MDS property by enumerating all (
n

k)subsets of k nodes to 

see if each of their corresponding encoding matrices forms 

a full rank. For the repair MDS property, we check that for 

any failed node (out of n nodes), we can collect any one 

out of n−k chunks from the other n−1 surviving nodes and 

reconstruct the chunks in the new node, such that the MDS 

property is maintained. The number of checks performed 

for the repair MDS property is at most n(n − k)
n−1

(
n

k). If n 

is small, then the enumeration complexities for both MDS 

and repair MDS properties are manageable. If either one 

phase fails, then we return to Step 2 and repeat. We 

emphasize that Steps 1 to 5 only deal with the ECVs, so 

their overhead does not depend on the chunk size. 
 

Step 6: Download the actual chunk data and regenerate 

new chunk data. If the two-phase checking in Step 5 

succeeds, then we proceed to download the n−1 chunks 

that correspond to the selected ECVs in Step 2 from the n-

1 surviving storage nodes to NC-Cloud. Also, using the 

new ECVs computed in Step 4, we regenerate new chunks 

and upload them from NC-Cloud to a new node. 

 
 

IV. FMSR CODES PRESERVE THE FAULT 

TOLERANCE AND STORAGE EFFICIENCY OF 

MDS CODES. 

MDS codes are defined by two parameters n and k (k < n). 

An (n, k)-MDS code divides a file of size M into k pieces 

of size M/k each, and encodes them into n pieces such that 

any k out of n encoded pieces suffice to recover the 

original file. By storing the n encoded pieces over n nodes, 

a storage system can tolerate at most n − k node failures. 

An example of MDS codes is Reed-Solomon codes. 
 

Figure 1 shows the FMSR codes for a special case n = 4 

and k = 2. To store a file of size M units, an (n, k)-FMSR 

code splits the file evenly into k(n − k) native chunks, say 

F1, F2, . . . , Fk(n−k), and encodes them into n(n − k) parity 

chunks of size M/k(n−k) each. Each l
th

 parity chunk is 

formed by a linear combination of the k(n − k) native 

chunks, i.e., ∑ 
K(n-k) 

m=1 αl,m Fm for some encoding 

coefficients αl,m. All encoding coefficients and arithmetic 

are operated over a finite field Fq of size q. We store the 

n(n − k) parity chunks on n nodes, each keeping n − k 

parity chunks. Note that native chunks need not be stored. 

The original file can be restored by decoding k(n − k) 

parity chunks of any k nodes, where decoding can be done 

by inverting an encoding matrix [16]. Let Pi,j be the j
th
 

parity chunk stored on node i, where i = 1, 2, . . . , n and j 

= 1, . . . , n − k. 



           ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 5, May 2015 
 

Copyright to IJARCCE                                                       DOI  10.17148/IJARCCE.2015.45113                                                533 

V. NC-CLOUD DESIGN AND 

IMPLEMENTATION 

We implement NC-Cloud as a proxy that bridges user 

applications and multiple clouds. Its design is built on 

three layers. The file system layer presents NC-Cloud as a 

mounted drive, which can thus be easily interfaced with 

general user applications. The coding layer deals with the 

encoding and decoding functions. The storage layer deals 

with read/write requests with different clouds. Each file is 

associated with a metadata object, which is replicated at 

each repository. The metadata object holds the file details 

and the coding information (e.g., encoding coefficients for 

F-MSR). 
 

VI. CONCLUSION 

In this NC-Cloud we proposed a multi node failure 

recovery using network coding (FMSR) method. The 

NCCLOUD we present a proxy-based, multiple cloud 

storage system that practically addresses the reliability of 

today's cloud backup storage system. NCCLOUD provides 

a recovery as well as fault tolerance in storage; NC-Cloud 

presents a practical version of the FMSR codes, which 

generates parity chunks when node becomes failure. Our 

NC-Cloud prototype shows the effectiveness of FMSR 

codes in the backup usage in terms of response times.  

 

ACKNOWLEDGMENT 

I would like to thank our Guide Dr. Mohammed Abdul 

Waheed. For assisting me in this Paper. 

 

REFERENCES 
[1]. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. 

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. 

Zaharia. A View of Cloud Computing. Communications of the 
ACM, 53(4):50–58, 2010 

[2]. K. D. Bowers, A. Juels, and A. Oprea. HAIL: A High-Availability 

and Integrity Layer for Cloud Storage. In Proc. of ACM CCS, 2009 
[3]. B. Escoto and K. Loafman. Duplicity. http:// duplicity.nongnu.org/. 

[4]. A. Bessani, M. Correia, B. Quaresma, F. Andre´, and P. Sousa, 
―DEPSKY: Dependable and Secure Storage in a Cloud-of-

Clouds,‖Proc. ACM European Conf. Computer Systems (EuroSys 

’11), 2011. 
[5]. K.D. Bowers, A. Juels, and A. Oprea, ―HAIL: A High-Availability 

and Integrity Layer for Cloud Storage,‖ Proc. 16th ACM Conf. 

Computer and Comm. Security (CCS ’09), 2009. 

[6]. H.C.H. Chen and P.P.C. Lee, ―Enabling Data Integrity Protection in 

Regenerating-Coding-Based Cloud Storage,‖ Proc. IEEE 31st Int’l 

Symp. Reliable Distributed Systems (SRDS ’12), 2012. 
[7]. A.G. Dimakis, P.B. Godfrey, Y. Wu, M. Wainwright, and 

K.Ramchandran, ―Network Coding for Distributed Storage 

Systems,‖ IEEE Trans. Information Theory, vol. 56, no. 9, pp. 
4539-4551,Sept 

[8]. A.G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, ―A Survey on 

Network Codes for Distributed Storage,‖ Proc. IEEE, vol. 99, no. 3, 
pp. 476-489, Mar. 2011. 

[9]. A. Duminuco and E. Biersack, ―A Practical Study of Regenerating 

Codes for Peer-to-Peer Backup Systems,‖ Proc. IEEE Int’l Conf. 
Distributed Computing Systems (ICDCS ’09), 2009. 

[10]. Y. Hu, P.P.C. Lee, and K.W. Shum, ―Analysis and Construction of 

Functional Regenerating Codes with Uncoded Repair for 
Distributed Storage Systems,‖ Proc. IEEE INFOCOM, Apr. 2013. 

[11]. Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, ―Cooperative Recovery 

of Distributed Storage Systems from Multiple Losses with Network 

Coding,‖ IEEE J. Selected Areas in Comm., vol. 28, no. 2, pp. 268-

276, Feb. 2010. 

[12]. N. Kolakowski, ―Microsoft’s Cloud Azure Service 
SuffersOutage,‖http://www.eweekeurope.co.uk/news/news-

solutionsapplications 

[13]. J.S. Plank, ―A Tutorial on Reed-Solomon Coding for Fault- 
Tolerance in RAID-Like Systems,‖ Software—Practice & 

Experience, vol. 27, no. 9, pp. 995-1012, Sept. 1997 

[14]. [14]    Y. Hu, H.C.H. Chen, P.P.C. Lee, and Y. Tang, 
NCCloud:Applying Network Coding for the Storage Repair in a 

Cloudof-Clouds,‖ Proc. 10th USENIX Conf. File and Storage 

Technologies(FAST), 2012. 
[15]. K. Rashmi, N. Shah, and P. Kumar, ―Optimal Exact Regenerating 

Codes for Distributed Storage at the MSR and MBR Points via 

aProduct-Matrix Construction,‖ IEEE Trans. Information 
Theory,vol. 57, no. 8, pp. 5227-5239, Aug. 2011. 

[16]. K.V. Rashmi, N.B. Shah, P.V. Kumar, and K. 

Ramchandran,―Explicit Construction of Optimal Exact 
Regenerating Codes for Distributed Storage,‖ Proc. Allerton Conf., 

2009. 

[17]. Z. Wang, A. Dimakis, and J. Bruck, ―Rebuilding for Array Codes in 
Distributed Storage Systems,‖ Proc. IEEE Globe Com 

Workshops,2010. 

[18]. F. Oggier and A. Datta, ―Byzantine Fault Tolerance of 
Regenerating Codes,‖ Proc. IEEE Int’l Conf. Peer-to-Peer 

Computing (P2P ’11),2011. 

 

 

 

 

 

 


